米建春

博士、教授


北京大学工学院教授、博士生导师
节能与动力工程研究所所长


联系电话:010-62767074
电子邮箱:jcmi@coe.pku.edu.cn


米建春

教育经历


1979-1983:华中科技大学(原:华中工学院)动力系本科(热动),学士学位

1983-1986:华中科技大学动力系研究生(热动),硕士学位

1991-1994:澳洲Newcastle大学机械工程系 (流体力学),博士学位

 

工作经历


1986-1988:长沙理工大学(原名:长沙电力学院)电力系助教

1990-1991:Newcastle 大学机械工程系 访问学者

1994-1995:Newcastle 大学机械工程系 助理研究员

1995-1996:Adelaide 大学机械工程系 博士后

1997-2001:Adelaide 大学 澳洲国家研究员

2001-2005:Adelaide大学高级及主任研究员

2006-2013:Adelaide大学兼职教授

2006-今:  北京大学工学院教授

 

研究领域


燃气和煤炭的燃烧科学与技术

燃烧的污染控制技术

风力发电技术

流体湍流基础

 

背景资料

现任北京大学工学院能源系教授(博导),北京大学工学院节能与动力工程研究中心主任,浙江省及湖南省特聘专家;获得过“湖湘学者”、“楚天学者”等称号。1983和1986年在华中科技大学分别获工学学士和硕士学位(热能动力),1995年于澳洲Newcastle大学获理学博士学位(流体力学)。自1995年后在澳洲Adelaide大学分别做博士后, 依次担任澳国家研究员、高级研究员及兼职教授。从事的研究领域包括燃气和煤炭的燃烧科学与技术、燃烧的污染控制技术、流体湍流基础;在世界各地做特邀学术报告30余次;发表学术论文200余篇,其中100余篇被SCI收录,Google Scholar引用2800余次(h-index为29);获20多项燃烧器、射流喷嘴和超细颗粒物聚并装置国际和国内发明专利(授权)。

米建春研究团队在燃烧科学与技术方面拥有深厚的基础,过去十余年一直围绕高效低污染燃烧研究这一核心问题,通过理论分析、实验和数值模拟取得了一系列具有国际先进水平的原创性成果,最具代表性的基础工作是对新型燃烧 “温和(MILD)燃烧” 和 “温和氧燃烧(MILD Oxy-Combustion)”的研究,其成果为科技论文40余篇,包括SCI文章25篇和EI文章8篇,对推进温和燃烧基础研究做出了贡献。在应用方面,主持研发过自激抖动射流燃烧器(降NOx排放~50%,节能~8%)和正在研发新型高效低污染温和燃烧技术(应用包括煤粉燃烧、煤气化等;降NOx排放70%以上,某些条件下节能可达到~30%)及其工业(电力、冶金、钢铁等)应用;在燃烧烟气污染控制方面,已研发出新型的细颗粒物PM2.5以及有毒重金属汞的高效脱除技术。

米建春教授曾经和正在(中、港、澳大利亚)负责多项政府基金和工业支持的重要研究项目,包括973、863、985、自然科学基金和香港ITSP基金资助的多个项目。另外,他是中、澳政府科技奖和科研基金的评选和评审专家;且多次担任国际学术会议的主席或分会执行主席。

 

主要杂志论文和发明列表


发明专利:

  1. Mi, J., Luxton, R. E. and Nathan, G. J.: Family of Oscillating Jets (抖动射流家族), 在多国获发明专利(授权),其中包括 (网上 http://ep.espacenet.com 检索):
    • The US Patent (美国)- US6685102 (2004.2);
    • European Patent (欧洲)- EP1032789 (2004.9);
    • Australian Patent (澳洲)- AU746248 (2002.4);
    • New Zealand Patent (新西兰)- NZ504470 (2003.7);
    • Chinese Patent (中国)- CN1279756 (2001.1);
    • Japanese Patent (日本)- JP2001523559 (2001.11);
    • Canadian IP Office - CA2308494 (2008.10).
  1. 米建春、陈国谦 (2005): 一种气体火焰稳燃器, 申请(专利)号:CN200510109308.0, 中国知识产权局
  2. 米建春、杨立清(2006): 一种火焰稳燃器, 专利号: ZL200610080971.7, 中国知识产权局
  3. 米建春、周裕 (2008): 控制混合的煤气燃烧器, 专利号:ZL200810178796.4, 中国知识产权局.
  4. 周裕、米建春 (2010): 一种煤粉燃烧装置, 专利号:ZL201010150461.9, 中国知识产权局。
  5. 米建春、杨立清、杜诚(2010): 一种促进颗粒相互作用的装置,专利号: ZL201020299190.9, 中国知识产权局.
  6. 米建春、杨立清、杜诚(2010): 一种促进颗粒相互作用的装置和方法,专利号: ZL201010504951.4, 中国知识产权局.
  7. 米建春、杜诚(2012): 一种荷电辅助促进颗粒物相互作用的装置及方法, 专利号:201210056892.8. 中国知识产权局
  8. 米建春、杜诚(2012): 一种利用电极荷电促进颗粒物相互作用的装置及方法, 专利号:ZL201210056895.1. 中国知识产权局
  9. 张健鹏、米建春(2014):一种自激抖动射流混合器,专利号:ZL20142 0172372.8, 中国知识产权局.
  10. 米建春、梅振锋(2014):一种燃气工业锅炉的炉胆,专利号:ZL20142 0154485.5, 中国知识产权局.
  11. 米建春、王飞飞、梅振锋(2014):一种直喷式燃气无焰燃烧器,专利号:201410019516.0, 中国知识产权局.
  12. 米建春、梅振锋、王飞飞(2014):一种斜流式常温无焰燃烧器,专利号:201410020218.3, 中国知识产权局.
  13. 米建春、梅振锋、王飞飞(2014):一种内旋流外直流的无焰燃烧器,专利号:201420074077.9, 中国知识产权局.
  14. 陆正明、米建春、贝洪毅(2014):密闭连续供料中频生物质干馏垃圾加热炉,专利号:20141051638.4(发明), 中国知识产权局.
  15. 陆正明、米建春、贝洪毅(2014):密闭连续供料中频生物质干馏垃圾加热炉,专利号:201420570655.8(新型), 中国知识产权局.
  16. 潘祖明、米建春 (2015): 促进微细颗粒物聚集长大的装置和方法, 专利号:201510278522.2. 中国知识产权局.
  17. 米建春、潘祖明(2015): 促进微细颗粒物聚集长大的装置, 专利号:201520350954.5. 中国知识产权局.

具有代表性的SCI论文:

2016

  1. Chen D., Wu K and Mi J. (2016): Experimental investigation of aerodynamic agglomeration of fine particles from a 330 MW PC-fired boiler. Fuel, 165, 86-93.
  2. Dai C., Jia L., Zhang J., Shu Z., Mi J. (2016): On the flow structure of an inclined jet in crossflow at low velocity ratios, Int J. Heat and Fluid Flow, 58, 11-18.

2015

  1. Wang F., Li P., Mi J., Wang J. and Xu M. (2015): Chemical kinetic effect of hydrogen addition on ethylene jet flames in a hot and diluted coflow, Intl J. Hydrogen Energy, 40 (46), 16634-16648.
  2. Zhang J., Mi J., Li P., Wang F., and Dally B. (2015): MILD Combustion of Methane Diluted by CO2 and N2. Energy & Fuels, 29(7), 4576–4585.
  3. Wang L., Mi J., and Z Guo (2015): A modified lattice Bhatnagar-Gross-Krook model for convection heat transfer in porous media, arXiv: 1505.02976.
  4. Mei Z., Mi J., Wang F., Li P., and Zhang J. (2015): Chemical flame lengths of a methane jet into oxidant stream. Flow, Turbulence and Combustion, 94, 767-794.
  5. Mei Z., Wang F., Li P., Zhang J., and Mi J. (2015): Diffusion MILD combustion of firing pulverized-coal at a pilot furnace. Flow, Turbulence and Combustion, 95, 803-829.
  6. Xu M., Zhang J., Li P., Mi J. (2015): On two distinct Reynolds number regimes of a turbulent square jet, Theoretical & Applied Mechanics Letters, 5, 117-120.
  7. Wang L., Wang LP, Guo Z. and Mi J. (2015): Volume-averaged macroscopic equation for fluid flow in moving porous media, Int. J. Heat Mass Transf., 82, 357-368.
  8. Wang F., Li P., Zhang J., Mei Z. and Mi J. (2015): Routes of formation and destruction of nitrogen oxides in CH4/H2 jet flames in a hot coflow, Intl J. Hydrogen Energy, 40, 6228-6242.
  9. Wang L., Mi J., Meng X. and Guo Z. (2015): A localized mass-conserved lattice Boltzmann approach for non-Newtonian fluid flows, Communications in Computational Physics, 17(4), 908-924.

2014

  1. Li P., Wang F., Mi J., Dally B. B. and Mei Z. (2014): MILD Combustion under different premixing patterns in a laboratory-scale furnace. Energy & Fuels, , 28(3) 2211-2226..
  2. Li P., Wang F., Tu Y., Mei Z., Zhang J., Zheng Y., Liu H., Liu Z., Mi J., Zheng C. (2014): MILD oxy-combustion characteristics of light-oil and pulverized-coal in a pilot-scale furnace. Energy & Fuels, 28 (2): 1524-1535.
  3. Wang F., Li P., Mei, Z. and Mi J. (2014): Auto- and forced-ignition temperatures of diffusion flames obtained through the steady RANS modeling. Energy & Fuels, 28 (1), 666–677.
  4. Mei Z., Li P., Wang F., Zhang J. and Mi J. (2014): Influences of reactant injection velocities on MILD coal combustion. Energy & Fuels, 28 (1), 369–384.
  5. Wang F., Li P., Mei Z., Zhang J. and Mi J. (2014): Combustion of CH4/O2/N2 in a well stirred reactor. Energy, accepted.
  6. Zhang J., Xu M., and Mi J. (2014): Large eddy simulations of a circular orifice jet with and without a cross-sectional exit plate, Chin Phys B, 23(4), DOI: 10.1088/1674-1056/23/4/044704.
  7. Xu M., Tong X., Yue D., Zhang J., Mi J., Nathan G.J. and Kalt P.A.M. (2014): Effect of noncircular orifice plates on the near flow field of turbulent free jets, Chin Phys B, accepted.
  8. Wang L., Mi J., Meng X. and Guo Z. (2014): A localized mass-conserved lattice Boltzmann approach for non-Newtonian fluid flows, Communications in Computational Physics, accepted.
  9. Wang L., Guo Z. and Mi J. (2014): Drafting, kissing and tumbling process of two particles with different sizes, Computer & Fluids, accepted.

2013

  1. Mei Z., Wang F., Li P. and Mi J. (2013): Diffusion flame of a CH4/H2 jet in a hot coflow: effects of coflow oxygen and temperature, Chinese J. Chemical Engineering, 21(7), 11-24.
  2. Mi J., Xu M., and Zhou T. (2013): Reynolds number influence on statistical behaviors of turbulence in a circular free jet, Physics of Fluids, 25(7), 075101.
  3. Wang F., Mi J. and Li P. (2013): Combustion regimes of a jet diffusion flame in hot coflow, Energy & Fuels, DOI: 10.1021/ef400500w.
  4. Xu J., Zhang J., Wang H. and Mi J. (2013): Fine particle behavior in the air flow past a triangular cylinder, Aerosol Science & Technology, 47(8), 875-887.
  5. Xu M., Zhang J., Mi J., Nathan G. J., and Kalt P. A. M. (2013): PIV measurements of turbulent jets issuing from triangular and circular orifice plates, Sci. China-Phys Mech Astron, 56(6), 1-11. DOI: 10.1007/s11433-013-5099-0.
  6. Zhang J., Xu M., Pollard A.and Mi J. (2013): On the spectral exponent over the inertial-range in a turbulent square jet, Physical Review E, 87, 053009.
  7. Xu M., Pollard A., Mi J., Secretain F., and Sadeghi H. (2013): Effects of Reynolds number on some properties of a turbulent jet from a long square pipe, Physics of Fluids 25, 035102; doi: 10.1063/1.4797456.
  8. Li P., Dally B.B., Mi J. and Wang F. (2013): MILD Oxy-combustion of gaseous fuels in a laboratory-scale furnace, Combustion & Flame 160(5), 933-946.
  9. Xu M., Zhang J., Mi J., Nathan G. J., and Kalt P. A. M. (2013): Mean and fluctuating velocity fields of a diamond turbulent jet, Chinese Physics B, 22(3), 034701.
  10. Deo, R. C., Nathan, G. J. and Mi, J. (2013): Similarity analysis of the momentum field of a subsonic, plane air jet with varying jet-exit Reynolds numbers, Physics of Fluids, 25(1), 015115 (31 pages).

2012

  1. Wang H.F., Zhou Y. and Mi J. (2012): Effects of aspect ratio on the drag of a wall-mounted finite-length cylinder in subcritical and critical regimes, Experiments in Fluids, 53, 423-436.
  2. Chen S., Mi J., Liu H. and Zheng C. (2012): First and second thermodynamic-law analyses of hydrogen-air counter-flow diffusion combustion in various combustion modes, Intl J. Hydrogen Energy, 37(6), 5234-5245.
  3. Mei Z., Mi J. and Wang F. (2012): Dimensions of CH4-Jet Flame in Hot O2/CO2 Coflow, Energy & Fuels, 26, 3257-3266.
  4. Mi J., Wang F., Li P. and Dally B.B. (2012): Modified vitiation by operational parameters in a MILD combustion furnace, Energy & Fuels, 26(1), 265-277.
  5. Zhang J., Mi J. and Wang H. (2012): A new mesh-independent model for droplet / particle collision, Aerosol Science & Technology, 46(6), 622-630.
  6. Xu M., Mi J. and Li P. (2012): Large eddy simulations of an initially-confined triangular oscillating jet, Flow, Turbulence and Combustion, 88(3), 367-386.

2011

  1. Mi J., Li P. and Zheng C. (2011): Impact of injection conditions on flame characteristics from a parallel multi-jet burner. Energy, 36, 6583-6595.
  2. Mi J. (2011): Influences of initial velocity, diameter and Reynolds number on a circular turbulent air/air jet, Chinese Physics B, 20(12), DOI: 10.1088/1674-1056/20/12/12.
  3. Mi J., Xu M. and Du C. (2011): Influence of low-pass filter cutoff frequency on turbulence properties of free jets, Measurement Science & Technology, 22, 125401.
  4. Wang F., Mi J., Li P. and Zheng C. (2011): Diffusion flame of a CH4/H2 jet in hot low-oxygen coflow, Intl J. Hydrogen Energy, 36, pp. 9267-9277.
  5. Du C., Mi J. and Zhou Y. (2011): Mini-jet controlled turbulent round jet, Chinese Physics Letters, 28(12), 124703.
  6. Mi J. and Feng B. (2011): Analytical investigation on the mean and the turbulent velocity fields of a plane jet, Chinese Physics B, 20(7), 074701.
  7. Li P. and Mi J., Dally B.B., Craig R.A., Wang F. (2011): Premixed moderate or intense low-oxygen dilution (MILD) combustion from a single jet burner in a laboratory-scale furnace, Energy & Fuels, 25 (7), 2782–2793.
  8. Li P. and Mi J. (2011): Influence of inlet dilution of reactants on premixed combustion in a recuperative furnace, Flow, Turbulence and Combustion, 87(4), pp. 617-638.
  9. Li P., Mi J., Dally B.B., Wang F. et al. (2011): Progress and recent trend in MILD Combustion, Sci. China E. 54(2), 255–269.
  10. Mi J., Xu M., Antonia, R. A. and Wang J. J. (2011): Thermal characteristics of the wake shear layers from a slightly heated circular cylinder, Experiments in Fluids 50(2), 429-441.

2010

  1. Mi, J. and Antonia, R. A. (2010): Key factors of determining the magnitude of vorticity in turbulent plane wakes. Chin. Phys. Lett. 27 (2), 024702.
  2. Mi, J. and Antonia, R. A. (2010): Approach to local axisymmetry in a turbulent cylinder wake. Experiments in Fluids 48(6), 933-947.
  3. Mi, J. and Nathan, G. J. (2010): Statistical properties of turbulent free jets issuing from nine differently-shaped nozzles. Flow, Turbulence and Combustion 84, 583-606.
  4. Mi, J., Kalt, P. and Nathan, G. J. (2010): On turbulent jets issuing from notched-rectangular and circular orifice plates. Flow, Turbulence and Combustion 84, 565-582.

2010年以前

  1. Mi J., Li P., Dally B.B., Craig R.A. (2009) Importance of initial momentum rate and air-fuel premixing on MILD combustion in a recuperative furnace. Energy & Fuels 23(11), 5349–5356.
  2. Mi J., Feng B., Deo R.C., and Nathan G.J.  (2009): Effect of exit Reynolds number on self-preservation of a plane jet, Acta Physica Sinica 58(11), 7756-7764.
  3. Deo, R. C., Mi, J. and Nathan, G. J. (2008): The influence of Reynolds number on a plane jet, Physics of Fluids 20(7), 075108.
  4. Mi, J., Kalt, P. and Nathan, G. J. (2007): PIV measurements of a turbulent Jet issuing from round sharp-edged plate, Experiments in Fluids 42, 625-637.
  5. Mi, J. (2006): Correlation between non-Gaussian statistics of a scalar and its dissipation rate, Physical Review E, 74(1), 016301.
  6. Mi, J. and Nathan, G. J. (2006): The influence of inlet flow condition on the frequency of self-excited jet precession, J. Fluids & Structures, 22(1), 129-133.
  7. Nathan G. J., Mi J., Alwahabi Z.T., Newbold G. J. R. & Nobe D. S. (2006): Impacts of a jet's exit flow pattern on mixing and combustion performance, Prog. Energy & Combust. Sci. 32(5/6), 496-538.
  8. Langman, A.S., Nathan, G.J., Mi, J. and Ashman, P.J. (2006): The influence of geometric nozzle profile on the global properties of a turbulent diffusion flame, Proc. Combust. Inst. 31, 1599-1607, The Combustion Institute, Pittsburgh, PA.
  9. Mi, J., Deo, R. C. and Nathan, G. J. (2005): Fast-convergent iterative scheme for filtering velocity signals and finding Kolmogorov scales, Physical Review E, 71(6), 018506.
  10. Mi, J., Deo, R. C. and Nathan, G. J. (2005): Characterization of high-aspect-ratio rectangular jets, Physics of Fluids, 17(6), 039506.
  11. Mi, J. and Nathan, G. J. (2005): Statistical analysis of the velocity field in a precessing jet, Physics of Fluids, 17(1), 015102.
  12. Mi, J. and Nathan, G. J. (2004): Self-excited jet-precession Strouhal number and its influence on downstream mixing field, J. Fluids & Structures, 19(6), 851-862.
  13. Mi, J., Zhou, Y. and Nathan, G. J. (2004): The effect of Reynolds number on the passive scalar mixing in a turbulent plane wake, Flow, Turbul. & Combust. 72, 311-331.
  14. Shtern, V. and Mi, J. (2004): Hysteresis and precession of a swirling jet normal to a wall, Phys. Rev. E, 69(1), 016312, 11 pages.
  15. Mi, J. and Nathan, G. J. (2003): The influence of probe resolution on the measurements of a passive scalar and its derivatives, Expts. Fluids, 34(6), 687-696.
  16. Mi, J., Nobes, D. and Nathan, G. J. (2001): Influence of exit conditions of round nozzles on the passive scalar field of a free jet, J. Fluid Mech., 432, 91-125.
  17. Mi, J., Nathan, G. J. and R.E. Luxton (2001): Mixing characteristics of a self-excited flapping jet, Flow, Turbul. & Combust., 67, 1-23.
  18. Mi, J. and Antonia, R. A. (2001): Effect of large-scale intermittency and mean shear on scaling range exponents in a turbulent jet, Phys. Rev. E, 64, 026302, 7 pages.
  19. Mi, J. and Nathan, G. J. (1999): Effect of small vortex-generators on scalar mixing in the developing region of a turbulent jet, Intl. J. Heat & Mass Transf., 42(21), 3919-26.
  20. Mi, J. (1998): Non-Gaussian statistics of a passive scalar in turbulent flows, Proc. Combust. Inst. 27, The Combustion Institute, Pittsburgh, PA, pp. 989-995.
  21. Mi, J. and Antonia, R. A. (1996): Vorticity characteristics of the intermediate turbulent wake, Expts. Fluids, 20, 383-392.
  22. Mi, J. and Antonia, R. A. (1995): A general relation for stationary probability density functions, Phys. Rev. E, 51, 4466-69.
  23. Mi, J., Antonia, R. A. and Anselmet, F. (1995): Joint statistics between temperature and its dissipation rate components in a round jet, Phys. Fluids, 7, 1665-74.
  24. Mi, J. and Antonia, R. A. (1995): Thermal characteristics of turbulent vortices in the wake of a circular cylinder, Turbulent Shear Flows 9, 165-185, Berlin, Springer.
  25. Mi, J. and Antonia, R. A. (1994): Corrections to Taylor’s hypothesis in a turbulent circular jet, Phys. Fluids, 6, 1548-52.
  26. Antonia, R. A. & Mi, J. (1993): Temperature dissipation in a turbulent round jet, J. Fluid Mech., 250, 531-550.